初二数学下册知识点归纳

  • 基础会计学知识点归纳

    推荐度:

  • 初二数学下册教学计划

    推荐度:

  • 人民版历史必修一知识点归纳

    推荐度:

  • 初二政治上册知识点总结

    推荐度:

  • 初二数学教学反思

    推荐度:

  • 相关推荐

初二数学下册知识点归纳

  数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。下面跟着小编来看看初二数学下册知识点归纳吧!希望对你有所帮助!

初二数学下册知识点归纳

  初二数学下册知识点归纳1

  第一章分式

  1分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3整数指数幂的加减乘除法

  4分式方程及其解法

  第二章反比例函数

  1反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2反比例函数在实际问题中的应用

  第三章勾股定理

  1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

  第四章四边形

  1平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的.两个角相等的梯形是等腰梯形。

  第五章数据的分析

  加权平均数、中位数、众数、极差、方差

  初二数学下册知识点归纳2

  1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。

  2、对于分式概念的理解,应把握以下几点:

  (1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

  (2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

  (3)分母不能为零。

  3、分式有意义、无意义的条件

  (1)分式有意义的条件:分式的分母不等于0;

  (2)分式无意义的条件:分式的分母等于0。

  4、分式的值为0的条件:

  当分式的分子等于0,而分母不等于0时,分式的值为0。即,使B=0的条件是:A=0,B≠0。

  5、有理式整式和分式统称为有理式。整式分为单项式和多项式。分类:有理式

  单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

  只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由数学网为您提供的初二下册数学知识点归纳:分式的概念,祝您学习愉快!

  初二数学下册知识点归纳3

  含义:分母中含有未知数的方程叫做分式方程。

  分式方程的解法:

  ①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};

  ②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;

  ③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

  一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 hailundali@foxmail.com 举报,一经查实,本站将立刻删除。

(0)
上一篇 2022年7月13日 下午7:54
下一篇 2022年7月13日 下午8:12

相关推荐